Xinyu Mao (Theory Seminar)

Universal Computational Extractors From Lattice Assumptions

Xinyu Mao (USC)
Monday, April 8th 2024, 2-3pm


Universal computational extractors (UCEs), introduced by Bellare, Hoang, and Keelveedhi [BHK13], can securely replace random oracles in various applications, including KDM-secure encryption, deterministic encryption, RSA-OAEP, etc. Despite its usefulness, constructing UCE in the standard model is challenging. The only known positive result is given by Brzuska and Mittelbach [BM14], who construct UCE with strongly computationally unpredictable one-query source assuming indistinguishability obfuscation (iO) and the existence of point obfuscators with auxiliary input (AIPO); they also construct UCE with q-query sources assuming iO and composable AIPO. On the other hand, Brzuska, Farshim, and Mittelbach [BFM14] show that the most potent version of UCE does not exist, assuming the existence of iO.


In this paper, we construct UCE with strongly computationally unpredictable one-query sources from lattice assumptions based on the GGH15 encodings [GGH15], without using iO. Security is proven under the following assumptions: (1) LWE with subexponential hardness; (2) evasive LWE, which is a new assumption proposed by Wee [Wee22]; (3) the existence of AIPO in NC1. Our UCE directly implies a universal hardcore function that outputs a polynomial number of bits, giving the first lattice-based universal hardcore function without using iO. We also put forth a new primitive called obliviously programmable function as an intermediate abstraction; it makes our analysis more modularized and could be of independent interest.

Speaker information:

Xinyu Mao is currently pursuing a PhD at the University of Southern California. Prior to USC, he graduated from Shanghai Jiao Tong University in 2022 with a Bachelor of Engineering degree. His research focuses on theoretical computer science, with a focus on cryptography and computational complexity.