Arya Mazumdar (Theory Seminar)

"Learning Mixtures and Trace Reconstruction"

Arya Mazumdar (UCSD)
Monday, May 10th 2021, 2-3pm

Abstract:

We present a generic analytic method of learning mixtures of distributions and apply it to learn Gaussian mixtures with shared variance, binomial mixtures with shared success probability, and Poisson mixtures, among others. The method was first introduced to reconstruct a sequence from their random subsequences, which is called the trace reconstruction problem. We show some new results in trace reconstruction and mention some further extensions of the method in learning mixtures. If time permits, I will also describe some applications in recovering sparse signals from a mixture of responses.